
4th International Web Archiving Workshop (2004)

An Introduction to Heritrix
An open source archival quality web crawler

Gordon Mohr, Michael Stack, Igor Ranitovic, Dan Avery and Michele Kimpton

Internet Archive Web Team
{gordon,stack,igor,dan,michele}@archive.org

Abstract. Heritrix is the Internet Archive's open-source, extensible, web-scale,
archival-quality webcrawler project. The Internet Archive started Heritrix
development in the early part of 2003. The intention was to develop a crawler
for the specific purpose of archiving websites and to support multiple different
use cases including focused and broadcrawling. The software is open source to
encourage collaboration and joint development across institutions with similar
needs. A pluggable, extensible architecture facilitates customization and
outside contribution. Now, after over a year of development, the Internet
Archive and other institutions are using Heritrix to perform focused and
increasingly broad crawls.

Introduction

The Internet Archive (IA) is a 5013C non-profit corporation, whose mission is to
build a public Internet digital library. Over the last 6 years, IA has built the largest
public web archive to date, hosting over 400 TB of data.

The Web Archive is comprised primarily of pages collected by Alexa Internet
starting in 1996. Alexa Internet is a Web cataloguing company founded by Brewster
Kahle and Bruce Gilliat in 1996. Alexa Internet takes a snapshot of the web every 2
months, currently collecting 10 TB of data per month from over 35 million sites.
Alexa Internet donates this crawl to the Internet Archive, and IA stores and indexes
the collection. Alexa uses its own proprietary software and techniques to crawl the
web. This software is not available to Internet Archive or other institutions for use or
extension.

In the latter part of 2002, the Internet Archive wanted the ability to do crawling
internally for its own purposes and to be able to partner with other institutions to
crawl and archive the web in new ways. The Internet Archive concluded it needed a
large-scale, thorough, easily customizable crawler. After doing an evaluation of other
open source software available at the time it was concluded no appropriate software
existed that had the flexibility required yet could scale to perform broad crawls.

2 Gordon Mohr et al.

4th International Web Archiving Workshop (2004)

The Internet Archive believed it was essential the software be open source to
promote collaboration between institutions interested in archiving the web.
Developing open source software would encourage participating institutions to share
crawling experiences, solutions to common problems, and even the development of
new features.

The Internet Archive began work on this new open source crawler development
project in the first half of 2003. It named the crawler Heritrix. This paper gives a
high-level overview of the Heritrix crawler, circa version 1.0.0 (August, 2004). It
outlines the original use-cases, , the general architecture, current capabilities and
current limitations. It also describes how the crawler is currently used at the Internet
Archive and future plans for development both internally and by partner institutions.
It also describes how the Archive currently uses the crawler and future plans for
development both internally and by partner institutions.

Use Cases

The Internet Archive and its collaborators wanted a crawler capable of each of the
following crawl types:

Broad crawling: Broad crawls are large, high-bandwidth crawls in which the
number of sites and the number of valuable individual pages collected is as important
as the completeness with which any one site is covered. At the extreme, a broad
crawl tries to sample as much of the web as possible given the time, bandwidth, and
storage resources available.

Focused crawling: Focused crawls are small- to medium-sized crawls (usually less
than 10 million unique documents) in which the quality criterion is complete coverage
of some selected sites or topics.

Continuous crawling: Traditionally, crawlers pursue a snapshot of resources of
interest, downloading each unique URI one time only. Continuous crawling, by
contrast, revisits previously fetched pages – looking for changes – as well as
discovering and fetching new pages, even adapting its rate of visitation based on
operator parameters and estimated change frequencies.

Experimental crawling: The Internet Archive and other groups want to experiment
with crawling techniques in areas such as choice of what to crawl, order in which
resources are crawled, crawling using diverse protocols, and analysis and archiving of
crawl results.

An Introduction to Heritrix 3

4th International Web Archiving Workshop (2004)

Required Capabilities

Based on the above use cases, the Internet Archive compiled a list of the
capabilities required of a crawling program. An important contribution in developing
the archival crawling requirements came from the efforts of the International Internet
Preservation Consortium (IIPC) a consortium of twelve National Libraries and the
Internet Archive. The mission of the IIPC is to acquire, preserve and make accessible
knowledge and information from the Internet for future generations everywhere,
promoting global exchange and international relations. IIPC member libraries have
diverse web resource collection needs, and contributed several detailed requirements
that helped define the goals for a common crawler. The detailed requirements
documen t deve loped by the I IPC can be found a t :
"http://netpreserve.org/publications/iipc001.pdf"http://netpreserve.org/publications/iip
c-d-001.pdf.

The Heritrix Project

Heritrix is an archaic word for heiress, a woman who inherits. Since our crawler
seeks to collect and preserve the digital artifacts of our culture for the benefit of future
researchers and generations, this name seemed appropriate.

Java was chosen as the implementation software language. As a high-level, object-
oriented language, Java offers strong support for modular design and components that
are both incrementally extendable and individually replaceable. Other key reasons for
choosing Java were its rich set of quality open source libraries and its large developer
community, making it more likely that we would benefit from previous work and
outside contributions.

The project homepage is <http://crawler.archive.org>, featuring the most current
information on the project, downloads of the crawling software, and project
documents. There are also public databases of outstanding feature requests and bugs.
The project also provides an open mailing list to promote exchange of information
between Heritrix developers and other interested users.

Sourceforge [SOURCEFORGE], a site offering free online services for over
84,000 open source software efforts, hosts the Heritrix project. Sourceforge provides
many of the online collaborative tools required to manage distributed-team software
projects such as:

• Versioned source code repository (CVS)
• Issue databases for tracking bugs and enhancement requests
• Web hosting
• Mirrored, archived, high-availability file release system
• Mailing lists

A large community of developers knows and uses Sourceforge, which can help to
create awareness of and interest in the software. The limitations of Sourceforge
include:

4 Gordon Mohr et al.

4th International Web Archiving Workshop (2004)

• Occasionally unavailable or slow
• No direct control over problems that do arise
• Issue-tracking features and reporting are crude
• Can not be used to manage other internal software projects which may not

be open source

Heritrix is licensed under the Gnu Lesser General Public License (LGPL) [LGPL].
The LGPL is similar to the Gnu General Public License (GPL) in that it offers free
access to the full source code of a program for reuse, extension, and the creation of
derivative works, under the condition that changes to the code are also made freely
available. However, it differs from the full GPL in allowing use as a module or library
inside other proprietary, hidden source applications, as long as changes to the library
are shared.

Milestones

Since project inception, major project milestones have included:

-Investigational crawler prototype created, and various threading and network
access strategies tested, 2nd Q 2003

-Core crawler without user-interface created, to verify architecture and test
coverage compared to HTTrack [HTTRACK] and Mercator [MERCATOR] crawlers,
3rd Q 2003

-Nordic Web Archive [NWA] programmers join project in San Francisco, 4th Q
2003 – 1st Q 2004, adding a web user-interface, a rich configuration framework,
documentation, and other key improvements

-First public release (version 0.2.0) on Sourceforge, January 2004
-First contributions by unaffiliated developer, January 2004
-Workshops with National Library users in February and June of 2004
-Used as the IA’s crawler for all contracted crawls – usually consisting of a few

dozen to a few hundred sites of news, cultural, or public-policy interest – since
beginning of 2004.

-Adopted as the official crawler for the NWA, June 2004
-Version 1.0.0 official release, for focused and experimental crawling, in August

2004

Heritrix Crawler Architecture

In this section we give an overview of the Heritrix architecture, describing the
general operation and key components.

At its core, the Heritrix crawler was designed as a generic crawling framework into
which various interchangeable components can be plugged. Varying these

An Introduction to Heritrix 5

4th International Web Archiving Workshop (2004)

components enables diverse collection and archival strategies, and supports the
incremental evolution of the crawler from limited features and small crawls to our
ultimate goal of giant full-featured crawls.

Crawl setup involves choosing and configuring a set of specific components to run.
Executing a crawl repeats the following recursive process, common to all web
crawlers, with the specific components chosen:

 1. Choose a URI from among all those scheduled
 2. Fetch that URI
 3. Analyze or archive the results
 4. Select discovered URIs of interest, and add to those scheduled
 5. Note that the URI is done and repeat

The three most prominent components of Heritrix are the Scope, the Frontier, and
the Processor Chains, which together serve to define a crawl.

The Scope determines what URIs are ruled into or out of a certain crawl. The
Scope includes the "seed" URIs used to start a crawl, plus the rules used in step 4
above to determine which discovered URIs are also to be scheduled for download.

The Frontier tracks which URIs are scheduled to be collected, and those that have
already been collected. It is responsible for selecting the next URI to be tried (in step
1 above), and prevents the redundant rescheduling of already-scheduled URIs (in step
4 above).

The Processor Chains include modular Processors that perform specific, ordered
actions on each URI in turn. These include fetching the URI (as in step 2 above),
analyzing the returned results (as in step 3 above), and passing discovered URIs back
to the Frontier (as in step 4 above).

Figure 1 shows these major components of the crawler, as well as other supporting
components, with major relationships highlighted.

6 Gordon Mohr et al.

4th International Web Archiving Workshop (2004)

 CrawlOrder

CrawlController

ServerCache

Scope

Prefetch Chain
? Preselector
? PreconditionEnforcer

Web Administrative Console

Frontier

Already
Included URIs

URI Work
Queues

Fetch Chain
? FetchDNS
? FetchHTTP

Extractor Chain
? ExtractorHTML
? ExtractorJS

Write Chain
? ARCWriterProcessor

Postprocess Chain
? CrawlStateUpdater
? Postselector

ToeThreads
ToeThreads

ToeThreads

next(CrawlURI)

finished(CrawlURI)

schedule(URI)

Figure 1: The Web Administrative Console composes a CrawlOrder, which is then
used to create a working assemblage of components within the CrawlController.
Within the CrawlController, arrows indicate the progress of a single scheduled
CrawlURI within one ToeThre

Key Components

In this section we go into more detail on each of the components featured in Figure 1.

The Web Administrative Console is in many ways a standalone web application,
hosted by the embedded Jetty Java HTTP server. Its web pages allow the operator to
choose a crawl's components and parameters by composing a CrawlOrder, a
configuration object that also has an external XML representation.

A crawl is initiated by passing this CrawlOrder to the CrawlController, a
component which instantiates and holds references to all configured crawl

An Introduction to Heritrix 7

4th International Web Archiving Workshop (2004)

components. The CrawlController is the crawl's global context: all subcomponents
can reach each other through it. The Web Administrative Console controls the crawl
through the CrawlController.

The CrawlOrder contains sufficient information to create the Scope. The Scope
seeds the Frontier with initial URIs and is consulted to decide which later-discovered
URIs should also be scheduled.

The Frontier has responsibility for ordering the URIs to be visited, ensuring URIs
are not revisited unnecessarily, and moderating the crawler's visits to any one remote
site. It achieves these goals by maintaining a series of internal queues of URIs to be
visited, and a list of all URIs already visited or queued. URIs are only released from
queues for fetching in a manner compatible with the configured politeness policy. The
default provided Frontier implementation offers a primarily breadth-first, order-of-
discovery policy for choosing URIs to process, with an option to prefer finishing sites
in progress to beginning new sites. Other Frontier implementations are possible.

The Heritrix crawler is multithreaded in order to make progress on many URIs in
parallel during network and local disk I/O lags. Each worker thread is called a
ToeThread, and while a crawl is active, each ToeThread loops through steps that
roughly correspond to the generic process outlined previously:

Ask the Frontier for a next() URI
Pass the URI to each Processor in turn. (Distinct Processors perform the fetching,

analysis, and selection steps.)
Report the completion of the finished() URI

The number of ToeThreads in a running crawler is adjustable to achieve maximum
throughput given local resources. The number of ToeThreads usually ranges in the
hundreds.

Each URI is represented by a CrawlURI instance, which packages the URI with
additional information collected during the crawling process, including arbitrary
nested named attributes. The loosely-coupled system components communicate their
progress and output through the CrawlURI, which carries the results of earlier
processing to later processors and finally, back to the Frontier to influence future
retries or scheduling.

The ServerCache holds persistent data about servers that can be shared across
CrawlURIs and time. It contains any number of CrawlServer entities, collecting
information such as IP addresses, robots exclusion policies, historical responsiveness,
and per-host crawl statistics.

The overall functionality of a crawler with respect to a scheduled URI is largely
specified by the series of Processors configured to run. Each Processor in turn
performs its tasks, marks up the CrawlURI state, and returns. The tasks performed
will often vary conditionally based on URI type, history, or retrieved content. Certain

8 Gordon Mohr et al.

4th International Web Archiving Workshop (2004)

CrawlURI state also affects whether and which further processing occurs. (For
example, earlier Processors may cause later processing to be skipped.)

Processors are collected into five chains:

Processors in the Prefetch Chain receive the CrawlURI before any network activity
to resolve or fetch the URI. Such Processors typically delay, reorder, or veto the
subsequent processing of a CrawlURI, for example to ensure that robots exclusion
policy rules are fetched and considered before a URI is processed.

Processors in the Fetch Chain attempt network activity to acquire the resource
referred-to by a CrawlURI. In the typical case of an HTTP transaction, a Fetcher
Processor will fill the "request" and "response" buffers of the CrawlURI, or indicate
whatever error condition prevented those buffers from being filled.

Processors in the Extract Chain perform follow-up processing on a CrawlURI for
which a fetch has already completed, extracting features of interest. Most commonly,
these are new URIs that may also be eligible for visitation. URIs are only discovered
at this step, not evaluated.

Processors in the Write Chain store the crawl results – returned content or
extracted features – to permanent storage. Our standard crawler merely writes data to
the Internet Archive's ARC file format but third parties have created Processors to
write other data formats or index the crawled data.

Finally, Processors in the Postprocess Chain perform final crawl-maintenance
actions on the CrawlURI, such as testing discovered URIs against the Scope,
scheduling them into the Frontier if necessary, and updating internal crawler
information caches.

An Introduction to Heritrix 9

4th International Web Archiving Workshop (2004)

Name Function

Preselector Offers an opportunity to reject previously-scheduled URIs not
of interest.

Pr
ef

et
ch

PreconditionEnforcer Ensures that any URIs which are preconditions for the current
URI are scheduled beforehand.

FetchDNS Performs DNS lookups, for URIs of the “dns:” scheme.

Fe
tc

h

FetchHTTP Performs HTTP retrievals, for URIs of the “http:” and “https:”
schemes.

ExtractorHTML Discovers URIs inside HTML resources.
ExtractorJS Discovers likely URIs inside Javascript resources.
ExtractorCSS Discovers URIs inside Cascading Style Sheet resources.
ExtractorSWF Discovers URIs inside Shockwave/Flash resources.

ExtractorPDF Discovers URIs inside Adobe Portable Document Format
resources.

ExtractorDOC Discovers URIs inside Microsoft Word document resources.

Ex
tra

ct

ExtractorUniversal Discovers legal URI patterns inside any resource with an
ASCII-like encoding.

W
rit

e ARCWriterProcessor Writes retrieved resources to a series of files in the Internet
Archive’s ARC file format.

Postselector
Evaluates URIs discovered by previous processors against the
configured crawl Scope, scheduling those of interest to the
Frontier.

Po
stp

ro
ce

s
s

CrawlStateUpdater Updates crawler-internal caches with new information
retrieved by earlier processors.

Table 1: Processor modules included in Heritrix 1.0.0

Features and Limitations

Features

Heritrix 1.0.0 offers the following key features:
• Collects content via HTTP recursively from multiple websites in a single

crawl run, spanning hundreds to thousands of independent websites, and
millions to tens of millions of distinct resources, over a week or more of
non-stop collection.

• Collects by site domains, exact host, or configurable URI patterns,
starting from an operator-provided "seed" set of URIs

• Executes a primarily breadth-first, order-of-discovery policy for choosing
URIs to process, with an option to prefer finishing sites in progress to
beginning new sites (“site-first” scheduling).

• Highly extensible with all of the major Heritrix components – the
scheduling Frontier, the Scope, the protocol-based Fetch processors,

10 Gordon Mohr et al.

4th International Web Archiving Workshop (2004)

filtering rules, format-based Extract processors, content Write processors,
and more – replaceable by alternate implementations or extensions.
Documented APIs and HOW-TOs explain extension options.

• Highly configurable. Options include:
• Settable output locations for logs, archive files, reports and temporary

files.
• Settable maximum bytes to download, maximum number of documents to

download, and maximum time to spend crawling.
• Settable number of 'worker' crawling threads.
• Settable upper bound on bandwidth-usage.
• Politeness configuration that allows setting minimum/maximum time

between requests as well an option to base the lag between requests on a
multiple of time elapsed fulfilling the most recent request.

• Configurable inclusion/exclusion filtering mechanism. Includes regular
expression, URI path depth, and link hop count filters that can be
combined variously and attached at key points along the processing chain
to enable fine tuned inclusion/exclusion.

Most options can be overridden on a per domain basis and then in turn further
amended based off time-of-day, a regular expression or URI port match 'refinements'.

Robots.txt refresh rate as well as rich URI-retry-on-failure configurations.
Web-based user interface (UI) – “control panel” – via which crawls can be

configured, started, paused, stopped, and adjusted mid-crawl. The UI can be used to
view the current state of the crawl, logs and generated reports.

Logs retrievals – the URI of the document downloaded, the download result code,
time to download, document size, and the link that pointed to the downloaded
document – as well as processing errors encountered fetching, scheduling and
analyzing documents.

Reports capture the number of URIs visited, the number of URIs discovered and
pending, a summary of errors encountered, and memory/bandwidth/storage used –
both in total and on a sampling interval. Other runtime reports detail state of each
crawl worker thread and the state of the Frontier’s URI queues.

Includes link extractors for the common web document types -- HTML, CSS,
JavaScript, PDF, MS WORD, and FLASH – as well as a catchall “Universal
Extractor” for extracting links from everything else.

Archives the actual, binary DNS, HTTP, and HTTPS server responses, using an
open storage format ("ARC").

Negotiation of "http://www.faqs.org/rfcs/rfc2617.html" RFC 2617 (BASIC and
DIGEST Authentication) and HTML form-based login authentication systems.

Written in portable Java, so works under Linux, Windows, Macintosh OS X, and
other systems.

All source code available under an open source license (Library/Lesser Gnu Public
License, LGPL).

An Introduction to Heritrix 11

4th International Web Archiving Workshop (2004)

Limitations

Heritrix has been used primarily for doing focused crawls to date. The broad and
continuous use cases are to be tackled in the next phase of development (see below).
Key current limitations to keep in mind are:

• Single instance only: cannot coordinate crawling amongst multiple
Heritrix instances whether all instances are run on a single machine or
spread across multiple machines.

• Requires sophisticated operator tuning to run large crawls within machine
resource limits.

• Only officially supported and tested on Linux
• Each crawl run is independent, without support for scheduled revisits to

areas of interest or incremental archival of changed material.
• Limited ability to recover from in-crawl hardware/system failure.
• Minimal time spent profiling and optimizing has Heritrix coming up short

on performance requirements (See Crawler Performance below).

Crawler Performance

Currently the crawler is being used by Internet Archive to do several focused
crawls for our partners. It is also being used by several of the Nordic country libraries
for domain crawling. In each of these production crawls the Heritrix crawler is being
tested in a “true web” environment. By performing weekly crawls, IA continuously
tests the capabilities of the crawler and monitors performance and quality compared
to other crawlers. A typical weekly crawl configuration and administration is
illustrated in on the Heritrix crawler website at:
http://crawler.archive.org/cgi-bin/wiki.pl?HomePage.

To evaluate the operational performance of the crawler Internet Archive measures
the crawl documents captured over time. Typical performance of the Heritrix crawler
for crawls spanning over several days to several weeks are illustrated in the Firgure
below.

Figure 2 demonstrates the performance of the crawler during a small (less than 20
seeds) focused crawl and a much broader crawl(several hundred seeds). For the small
focused crawl the rate of documents discovered quickly drops off and slows the
crawler as the discovery process is completed. For the larger crawl (line 2) the rate of
documents discovered over time remains unchanged as the discovery process
continues over time. This is the type of behavior one would expect for a broad crawl
if there is always a queue of URIs in the frontier.

12 Gordon Mohr et al.

4th International Web Archiving Workshop (2004)

Figure 2: Documents discovered per second over time

A set of tools was developed at the Internet Archive for internal use to determine
the quality of a crawl compared to other independent crawlers or between periodic
crawls. The URI comparison tool is a post-crawling analysis tool that compares two
sets of URIs and produces statistical reports on similarity and the differences between
two crawls. This tool can be used to compare two crawls having the same URI seeds
or to compare coverage of different crawling software.

The URI comparison tool requires input of two crawl sets of URIs and their
respective HTTP response codes, content lengths, and MIME types. When two
different crawls,

When using the comparison tools, one can determine the percent overlap between
two crawls and what percentage of content is unique to both crawls.

This tool can also be used to measure URI overlap between periodic crawls (ie
weekly or daily) starting from the same seed list. The figure below shows for this
particularly weekly crawl this is a 70% overlap of identical URI’s. In this particular
case where the overlap is so high one would want to employ deduplication techniques
if plausible. This chart also shows the number of new URI’s discovered each week
and number of URIs which have disappeared from the prior week.

An Introduction to Heritrix 13

4th International Web Archiving Workshop (2004)

Figure 3: Weekly comparision Crawl of 15 seed domains

Many of these tests and quality assurance procedures are still in development as we
continue to learn more about quality archival crawling.

Future Plans

Current plans for the future development of Heritrix, post 1.0.0, fall into three
general categories: improving its scale of operation; adding advanced scheduling
options; and incremental modular extension.

Our top priority at the Internet Archive is to dramatically increase the scale of
crawls possible with Heritrix, into crawls that span hundreds of millions and then
billions of web resources. This entails two necessary advances.

First, the ability to perform crawls of arbitrarily large size and duration on a single
machine, with minimal operator tuning, limited only by available disk storage. This
will require changes that strictly cap the RAM used by the crawler, and the
conversion of every crawler data structure that grows with crawl size or duration to
use disk-based data structures, trading away performance for long, large runs.

Second, a way to arrange for networks of cooperating crawl machines to
intelligently divide up the work of a crawl. This will enable the rapid acquisition of
ever-larger collections of web resources, limited only by the bandwidth and local

14 Gordon Mohr et al.

4th International Web Archiving Workshop (2004)

hardware resources devoted to the crawl. Enabling effective distribution across
machines requires strategies for dividing the work, sharing results, and recovering
from partial failures. Other work in parallel crawling clusters, such as that done by the
UbiCrawler project, provides useful precedent for the necessary additions.

Separately, there are a number of incremental feature improvements planned to
expand the base crawler capabilities and the range of optional components available.
The Internet Archive plans to implement:

Support for FTP fetching
Improved recovery of crawls from set checkpoints
Automatic detection and adaptation to many “crawler traps” and challenging

website design practices (such as URI-line session-IDs)
Additional operator options for specifying crawl scopes, dealing with in-crawl

problems, and forcing the retry of groups of URIs.

Collaboration with other Institutions

A top priority of several outside efforts building atop Heritrix is to add greater
sophistication to the scheduling of URIs. This will likely include:

• Periodic revisits of sites or URIs at predetermined intervals
• Working to only fetch, or only store, changed resources
• Adaptively predicting rates of change and using such information to

change revisit schedules
• Synamically prioritizing work based on diverse measures of site and URI

value

Discussions are underway for such work to be coordinated with interested
European National Libraries.

In the open source community

Others are using the crawler outside of the archiving and library community.
While anyone can download Heritrix with no obligation to report back on its use or
extension, questions and patches coming in to the general Heritrix discussion list will
sometimes comment on the projects to which Heritrix is being applied. One group
uses Heritrix to harvest web pages as a means of testing whether their commercial
tokenizing tools continue to work against the latest web content. Another group is
using Heritrix to take frequent snapshots of particular web servers for a University
research project. It appears someone else is investigating Heritrix as a way to harvest
institutional contact addresses, perhaps to make unsolicited commercial approaches.
(We have no veto power over outside uses of our released software.)

A main focus for the future is continued fostering of the community that is growing
up around Heritrix, to help improve the common code base with diverse crawling
experience and enhancements.

An Introduction to Heritrix 15

4th International Web Archiving Workshop (2004)

Conclusion

The Internet Archive’s digital collections include a large and unique historical
record of web content. This Web collection continues to grow each year, with regular
Alexa snapshots and now, material collected by the new Heritrix web crawling
software. Heritrix software is the product of an open source approach and
international collaboration. In its 1.0.0 version, Heritrix is a full-featured focused
crawler with a flexible architecture to enable many divergent crawling practices, now
and in the future. Its evolution should continue to benefit from an open collaborative
process, as it becomes capable of larger and more sophisticated crawling tasks.

Acknowledgements

This paper includes significant contributions from others at the Internet Archive,
including Brewster Kahle, Raymie Stata and Brad Tofel.

This work is licensed under a Creative Commons License.
http://creativecommons.org/licenses/by-nd/2.0/

References

[GUTENBERG] http://www.gutenberg.net/
[ICDL] http://www.icdlbooks.org/
[IIPC] http://www.netpreserve.org/
[ALEXA] http://pages.alexa.com/company/index.html
[BURNER97] http://www.webtechniques.com/archives/1997/05/burner/
[WAYBACK] http://www.archive.org/web/web.php
[NWA] http://nwa.nb.no/
[SOURCEFORGE] http://www.sourceforge.net
[LGPL] http://www.gnu.org/copyleft/lesser.html
[HTTRACK] http://www.httrack.com
[MERCATOR] http://research.compaq.com/SRC/mercator/
[JETTY] http://jetty.mortbay.com/
[ROBOTS] http://www.robotstxt.org
[UBICRAWLER] http://ubi.imc.pi.cnr.it/projects/ubicrawler/

